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ABSTRACT 

We know the concepts of open sets, closed sets, door- space, closure and dense sets of a topological space 

defined on any given set of elements. Here in this chapter we shall introduce all these concepts on the 

graphs. First we shall define all the definitions w.r.t. the topological space of any set of elements.  
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INTRODUCTION  

Open Set: Given topological space (X, T) any set A T is said to be an open subset of X of T-open set.  

 

Closed Set: Given a topological space (X,T), the complement in X of an open set belongs to is defined to 

be a closed set or T-closed set. 

OR 

Given a topological space (X, T) a subset a of X i.e. A  X is said to be T closed set iff  X ~ A  T i.e. 

iff X ~ A is T- open.  

Open Set: Given a topological space (E, T) defined on any set of edges, let E’ T is said to an open set of 

E of T= open set  

Example: let E {e1, e2, e3] is an edge set on a simple graph G. 

let  a topology T = {, {e1. e2} E}  

 

 

on the edge of  =  {e1. e2, e3} 

let E' T i.e. {e1. e2, }  T i.e. 

As E' T, hence it called T- open set. Similarly  











 

 

 

 

 

and E T i.e. 

 

 

 

 

 

 

 

Thus  &  E are also T-open set.  

Let us consider one more example for the better understanding of open sets with respect of edge set of 

graphs.  
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Example: Now taking an edge set of simple graph  

defined on the 5 edges.  

 

 

let E = {e1, e2, e3, e4, e5} 

 

 

let us a topology T = {{e1,}, {e1, e2,} {e1, e3, e4},   {e1, e2, e3, e4} E} 

on the edge set E. 

As E' = {e1, e2, e4}  T hence E' is open subset of E or T-open set.  

 

 

 

 

 

 

i.e.  

 

 

Similarly  E" = {e1, e2, e3, e4) is also an open subset of E. 

i.e.  

 

 

 

 

 

 

 

 

 

Hence all the sets belong to the topology T is said to be open subset of e. Similarly we can define the T-

closed sets respect to edge set of simple graph.  

 

Closed Set: Given a topological space (E, T), a subset E1 of i.e. E1 E1 E is said to be T-closed set if the 

complement E1 i.e. E1 a T-open set on E. 

Example: consider an example set us take an edge set E= {e1, e2, e3) and a topological space T = E)  

 

 

 

 

 

 

 

 

Since 

E - = E and E = E = , thus E and are T-closed set. As these are the compliments of T-open set and 

E. 

 

 

We can examine it with the help of the graph : 
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As E is complement of which belongs E to the topology, T, so E is T-closed.  

 

Similarly  

 

 

 

 

 

 

 

 

 

Similarly T, hence E is a T- closed set. 

Similarly we can explain the same concept with the help of another example:  

Example: let there exist a Topology T 

 = {{e2}, { e2, e3}  {e2, e4 },  { e2, e3, e4,}, E} on the edge set. 

 

E =  { e1, e2, e3, e4}. i.e.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As the complement of i.e. E is an open set. Thus is a T-closed set 

Similarly  
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Thus {e2} and {e1,e3, e4} are complementary to each other, hence the complement of { e1,e3, e4} E is { 

e2,} which is a T- open hence { e1,e2, e4 } is a closed set.  

Same way 

 

E {e2, e3, e4} = 

 

 

 

 

E = {e2, e4} = 
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Thus E, {e2. e3}, {e2. e4}, {e1. e3 e4} are the complement of { e1, e4} {e1, e3} and { e1 }. Thus {e1. e4}, {e1. 

e3}, & {e1} are also T- closed sets.  

 

Theorem 1: If (E,T) be a topological, then  

(i) any arbitrary  intersection of closed set in E is closed..  

(ii) any finite union of closed sets is E is closed. 

Proof: let the edge set is E= {e1, e2, e3) and the topology  

 T =  { E, {e1}, {e1, e2}, {e1. e3}}. 

(i) let {Ea : } be an arbitrary of collection of closed sets of E. 

Now to show {E :  } is a T closed set. 

let E is T-closed,  

E E is open, -

-E} is open by the (ii) axiom of topology.  

-{E} is T- open by Demorgan's law. 

{E} is T- closed, as the complement of an open set is a closed set.  

Now we will verify it with the above given topologies.  

the T-closed set are E, { e2, e3,} {e3}, {e2}. 

let E, where are E's closed sets. 

i.e. E  {e2, e3) {e3) {e2)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hence E, =  E’ complement of an open set E. 

 

Thus intersection of finite family of closed set is closed.  
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(ii) let E1 & E2  E, be T- closed. Then E1, E2 E are T- closed. 

E-E1 & E-E2 are T open 

 (E-E1)  (E-E2) are T- open by the axiom of topology T3. 

E- (E1   E2) is T open  by demorgan law 

 (E1   E2) is  T-closed, as the complement of open set is closed.  

Now let us verify  it with the help of an example :  

let E1 = {e2}, E2 = {e2, e3) are closed sets. 

E1 = i.e. {e1, e3} & E2 = {e1} are T-open  
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By demorgan E- (E1  E2) is T- open  

i.e. E- {E1 E2} T 
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Hence E- (E1  E2) is T- open.  

As the complement is open, thus by def. of closed set, set is closed.  Hence (E1  E2) is closed. 

 

 

 

 







Closed 

Now, we will study another concept Door Shape with respect to the edge set of the simple graph.  
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